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the notion of &; as follows; we consider the moment when radius r has
become equal to s (s < u); at the moment when s has become s + 3 s,
the length of the circumference, of which the radius is equal to s, is strained
by 3 & = (3s)/s = 9dlogs. The density being constant, one can write :
(14 de) (1 + 8é&)=1thatistosay: 8 &g = — J &. On the other side,
the shear strain 8y may be defined by the egality : 8y = 8 (et — &r) =2 Slog s,
which may be integrated as follows
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The fifth column of table 3 is this one of the so-called “natural shear strains”.
The shear strains in the cylindrical wall are then compared with torsion test
shear strains. By making use of Manning’s hypothesis (c), it becomes then
possible, to fill the sixth column of table 3 as well as the following column.
In fact the figures put in the sixth column are fictitious ones but their pres-
ence is necessary to get a clear insight into the matter.
Eq. (27) shows, that following relation is absolutely true
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=2 (r s u) (22913 — 2.2271).

If we assume, that the true mean of z/(r 4+ ) is equal to its arithmetical
mean % (5.02 + 5.30) following relation is then only approximately true

p2.22711 = p2.2013 + (5.02 4 5.30) (2.2913 — 2.2271) = p2.2013 + 0.€62

Let us now consider the case of a cylindrical wall, of which the initial radii
are respectively 1 and 15 and of which the inner radius has undergone the
strong displacement »; = 1, because the inner surface of the cylindrical
wall has been submitted to an internal pressure p; still unknown. One puts
down p 2.2013 =0 and thus pz.2271 = 0.662. One can write

p2.16s6 = po.2e71 + (5.30 + 5.59) (2.2271 — 2.1656)
= pa.2271 + 0.670 = 0.662 + 0.670

and so on. Figures 0.662, 0.670 etc... are put down in the eighth column of
table 3, from the bottom upwards. The last column contains the cumulated
sums of these figures, put down from the bottom upwards. This last column
shows us, which are the pressures existing in the wall and particularly
shows, that the internal pressure is equal to 3.30. Stress ot, is calculated
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by making use of following relation oy = 2v + or = 27r—p. The problem is
thus solved, provided that stress o, is overlooked.

In the earlier version of his method, MANNING [1945] has shown on a
concrete example, how it is possible to predetermine the ultimate pressure
P1u, a cylinder is submitted to, before bursting. By considering increasing
displacements u; of the inner radius and by computing for each of the
displacements the internal pressure by means of a table, it has been found,
that from a certain value of u;, onwards, pressure p; decreases, passing thus
through a maximum, which is identified with p1,. This is obviously a tedious
and time consuming method.

The improved version [1957] of this method is based on table 3, extended
up to r; = 28 for instance, which is indeed a very high value of the k ratio.
The external pressure corresponding to r2 = 28 being assumed to be equal
to zero, the other pressures are calculated by making summations up to
the inner radius. At a certain place, the pressure will be found equal to
7y (1-1/282) which is the critical yield pressure according to eq. (15). Such
a place is thus the boundary between the elastic zone and the plastic one.
An example of such a table in which radius r takes all the values between
1 and 28 has been given by CROSSLAND, JORGENSEN and BONEs [1958]. A
diagram has been plotted by utilizing the data of this table and a curve
obtained, which is shown qualitatively on fig. 8 and for convenience sake a
logarithmic scale has been used for representing the abcissae.
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Fig. 8.

We will now try to predetermine the ultimate pressure piu, which a
wall with a k ratio equal to 2 is submitted to. By moving from right to left




