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the notion of et as follows; we consider the moment when radius r has 
become equal to 8 (8 < u); at the moment when 8 has become 8 + ~ 8, 

the length of the circumference, of which the radius is equal to 8, is strained 
by ~ et = (~8)18 = ~ logs. The density being constant, one can write: 
(1 + ~ et) (1 + ~ er) = 1 that is to say : ~ er = - ~ et. On the other side, 
the shear strain ~ y may be defined by the egality : ~y = a (et - er) = 2 ~ log 8, 

which may be integrated as follows 

If+U [uJ 'Y = 2 r ~ log 8 = 2 log 1 + r . 

The fifth column of table 3 is this one of the so-called "natural shear strains". 
The shear strains in the cylindrical wall are then compared with torsion test 
shear strains. By making use of Manning's hypothesis (c), it becomes then 
possible, to fill the sixth column of table 3 as well as the following column. 
In fact the figures put in the sixth column are fictitious ones but their pres
ence is necessary to get a clear insight into the matter. 

Eq. (27) shows, that following relation is absolutely true 

p2.22?l - P2.2913 = 2 -- d (r + u) L
2.2913 T 

2.2271 r + u 

= 2 f_T_) (2.2913 - 2.2271). 
\ r + u 

If we assume, that the true mean of T/(r + u) is equal to its arithmetical 
mean t (5.02 + 5.30) following relation is then only approximately true 

p2.22?l = p2.2913 + (5.02 + 5.30) (2.2913 - 2.2271) = P2.29J3 + 0.(;62 

Let us now consider the case of a cylindrical wall, of which the initial radii 
are respectively 1 and 15 and of which the inner radius has undergone the 
strong displacement Ul = 1, because the inner surface of the cylindrical 
wall has been submitted to an internal pressure PI still unknown. One puts 
down P 2.2913 =0 and thus P2.2271 = 0.662. One can write 

P2.1656 = P2.2271 + (5.30 + 5.59) (2.2271 - 2.1656) 

= p2.2271 + 0.670 = 0.662 + 0.670 

and so on. Figures 0.662, 0.670 etc ... are put down in the eighth column of 
table 3, from the bottom upwards. The last column contains the cumulated 
sums of these figures, put down from the bottom upwards. This last column 
shows us, which are the pressures existing in the wall and particularly 
shows, that the internal pressure is equal to 3.30. Stress at, is calculated 



30 L. DEFFET AND L. LIALINE [CH. 1,5] 

by making use of following relation O't = 2. + O'r = 2.-p. The problem is 
thus solved, provided that stress 0' z is overlooked. 

In the earlier version of his method, MANNING [1945] has shown on a 
concrete example, how it is possible to predetermine the ultimate pressure 
PI u, a cylinder is submitted to, before bursting. By considering increasing 
displacements !II of the inner radius and by computing for each of the 
displacements the internal pressure by means of a table, it has been found, 
that from a certain value of UI, onwards, pressure PI decreases, passing thus 
through a maximum, which is identified withplu. This is obviously a tedious 
and time consuming method. 

The improved version [1957] ofthis method is based on table 3, extended 
up to r2 = 28 for instance, which is indeed a very high value of the k ratio. 
The external pressure corresponding to r2 = 28 being assumed to be equal 
to zero, the other pressures are calculated by making summations up to 
the inner radius. At a certain place, the pressure will be found equal to .y (1-1/282) which is the critical yield pressure according to eq. (15). Such 
a place is thus the boundary between the elastic zone and the plastic one. 
An example of such a table in which radius r takes all the values between 
1 and 28 has been given by CROSSLAND, JORGENSEN and BONES [1958]. A 
diagram has been plotted by utilizing the data of this table and a curve 
obtained, which is shown qualitatively on fig. 8 and for convenience sake a 
logarithmic scale has been used for representing the abcissae. 
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We will now try to predetermine the ultimate pressure PIu, which a 
wall with a k ratio equal to 2 is submitted to. By moving from right to left 


